4.8 Article

Iron-Doping-Induced Phase Transformation in Dual-Carbon-Confined Cobalt Diselenide Enabling Superior Lithium Storage

期刊

ACS NANO
卷 13, 期 5, 页码 6113-6124

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.9b02928

关键词

cobalt diselenide; carbon matrix; phase transition; anode; lithium-ion batteries

资金

  1. National Natural Science Foundation of China [51672049, 51871060, 51831009]
  2. China Postdoctoral Science Foundation [2018M640337]
  3. CURE (Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate Research Endowment) [18928]
  4. National University Student Innovation Program [201810246085]

向作者/读者索取更多资源

Transition metal chalcogenides (TMCs) have been investigated as promising anodes for high-performance lithium-ion batteries, but they usually suffer from poor conductivity and large volume variation, thus leading to unsatisfactory performance. Although nanostructure engineering and hybridization with conductive materials have been proposed to address this concern, a better performance toward practical device applications is still highly desired. Herein, we report an iron-doping-induced structural phase transition from pyrite-type (cubic) to marcasite-type (orthorhombic) phases in porous carbon/rGO-coupled CoSe2. The dual-carbon-confined orthorhombic CoSe2 (o-FexCo1-xSe2@NC@rGO) composites exhibit dramatically enhanced lithium storage performance (920 mAh g(-1) after 1000 cycles at 1.0 A g(-1)) over cubic CoSe2-based composites (c-CoSe2@NC@rGO). The combined experimental studies and density functional theory calculations reveal that this doping-induced structural phase transformation strategy could create a favorable electronic structure and ensure a rapid charge transfer. These results demonstrate that the phase transformation engineering may provide another opportunity in the design of high-performance TMC-based electrodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据