4.8 Article

Shear-Induced β-Crystallite Unfolding in Condensed Phase Nanodroplets Promotes Fiber Formation in a Biological Adhesive

期刊

ACS NANO
卷 13, 期 5, 页码 4992-5001

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.9b00857

关键词

self-assembly; coacervate; bioinspiration; nanodroplets; mechanoresponsive; Onychophora

资金

  1. German Research Foundation [MA 4147/7-1, SCHM 2748/5-1]
  2. Max Planck Society
  3. Natural Sciences and Engineering Research Council of Canada (NSERC) [RGPIN-2018-05243]

向作者/读者索取更多资源

Natural materials provide an increasingly important role model for the development and processing of next-generation polymers. The velvet worm Euperipatoides rowelli hunts using a projectile, mechanoresponsive adhesive slime that rapidly and reversibly transitions into stiff glassy polymer fibers following shearing and drying. However, the molecular mechanism underlying this mechanoresponsive behavior is still unclear. Previous work showed the slime to be an emulsion of nanoscale charge-stabilized condensed droplets comprised primarily of large phosphorylated proteins, which under mechanical shear coalesce and self-organize into nano- and microfibrils that can be drawn into macroscopic fibers. Here, we utilize wide-angle X-ray diffraction and vibrational spectroscopy coupled with in situ shear deformation to explore the contribution of protein conformation and mechanical forces to the fiber formation process. Although previously believed to be unstructured, our findings indicate that the main phosphorylated protein component possesses a significant beta-crystalline structure in the storage phase and that shear induced partial unfolding of the protein is a key first step in the rapid self-organization of nanodroplets into fibers. The insights gained here have relevance for sustainable production of advanced polymeric materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据