4.8 Article

Laser Annealing Improves the Photoelectrochemical Activity of Ultrathin MoSe2 Photoelectrodes

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 21, 页码 19207-19217

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b04785

关键词

transition metal dichalcogenides (TMDs); photoelectrochemical cell; laser treatment; vacancy healing; photocurrent mapping

资金

  1. Air Force Office of Scientific Research (AFOSR) [FA9550-17-1-0255]

向作者/读者索取更多资源

Understanding light-matter interactions in transition-metal dichalcogenides (TMDs) is critical for optoelectronic device applications. Several studies have shown that high intensity light irradiation can tune the optical and physical properties of pristine TMDs. The enhancement in optoelectronic properties has been attributed to a so-called laser annealing effect that heals chalcogen vacancies. However, it is unknown whether laser annealing improves functional properties such as photocatalytic activity. Here, we show that high intensity supra band gap illumination improves the photoelectrochemical activity of MoSe2 nanosheets for iodide oxidation in indium doped tin oxide/MoSe2/I-, I-3(-)/Pt liquid junction solar cells. Ensemble-level photoelectrochemical measurements show that, on average, illuminating MoSe2 thin films with 1 W/cm(2) 532 nm excitation increases the photoelectrochemical current by 142% and shifts the photocurrent response to more favorable (negative) potentials. Scanning photoelectrochemical microscopy measurements reveal that pristine bilayer (2L)-MoSe2, trilayer (3L)-MoSe2, and multilayer-thick nanosheets are initially inactive for iodide oxidation. The light treatment activates 2L-MoSe2 and 3L-MoSe2 materials, and the activation process initiates at the edge sites. The photocurrent enhancement is more significant for 2L-MoSe2 than for 1L-MoSe2. Multilayer-thick MoSe2 remains inactive for iodide oxidation even after the laser treatment. Our microscopy measurements reveal that the laser-induced enhancement effect depends critically on MoSe2 layer thickness. X-ray photoelectron spectroscopy measurements further show that the laser treatment oxidizes Mo(IV) species that are initially associated with Se vacancies. Ambient oxygen fills the Se vacancies and removes trap states, thereby increasing the overall photogenerated carrier collection efficiency. To the best of our knowledge, this work represents the first report on using laser to enhance the photoelectrocatalytic properties of few-layer-thick TMDs. The simple and rapid laser annealing procedure is a promising strategy to tune the reactivity of TMD-based photoelectrochemical cells for electricity and chemical fuel production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据