4.8 Article

Nanoscale Metal-Organic-Frameworks Coated by Biodegradable Organosilica for pH and Redox Dual Responsive Drug Release and High-Performance Anticancer Therapy

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 23, 页码 20678-20688

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b04236

关键词

drug delivery; pH-sensitive; redox-sensitive; metal-organic frameworks; organosilica; antitumor

资金

  1. Major Science and Technology Program for Water Pollution Control and Treatment, China [2017ZX07602-002]
  2. Public Science and Technology Research Funds Projects of Ocean [201505023]

向作者/读者索取更多资源

Responsive nanocarriers with biocompatibility and precise drug releasing capability have emerged as a prospective candidate for anticancer treatment. However, the challenges imposed by the complicated preparation process and limited loading capacities have seriously impeded the development of novel multifunctional drug delivery systems. Here, we developed a novel and dual-responsive nanocarrier based on a nanoscale ZIF-8 core and an organosilica shell containing disulfide bridges in its frameworks through a facile and efficient strategy. The prepared ZIF-8@DOX@organosilica nanoparticles (ZDOS NPs) exhibited a well-defined structure and excellent doxorubicin (DOX) loading capability (41.2%) with pH and redox dual-sensitive release properties. The degradation of the organosilica shell was observed after 12 h incubation with a 10 mM reducing agent. Confocal imaging and flow cytometry analysis further proved that the nanocarriers can efficiently enter cells and complete intracellular DOX release under the low pH and high glutathione concentrations, which resulted in an enhanced cytotoxicity of DOX for cancer cells. Meanwhile, subcellular localization experiments revealed that the ZDOS NPs entered cells mainly by endocytosis and then escaped from lysosomes into the cytosol. Moreover, in vivo assays also demonstrated that the ZDOS NPs exhibited negligible systemic toxicity and significantly enhanced anticancer efficiencies compared with free DOX. In summary, our prepared pH and redox dual-responsive nanocarriers provide a potential platform for controlled release and cancer treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据