4.8 Article

Path to Move Beyond the Resolution Limit with Directed Self-Assembly

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 22, 页码 20333-20340

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b02925

关键词

block copolymer lithography; PS-b-PMMA; self-registered self-assembly; graphoepitaxy; chemoepitaxy; density multiplication; chemical marker

资金

  1. Western Digital Company

向作者/读者索取更多资源

Directed self-assembly (DSA) of block copolymers (BCPs) has long been viewed as a powerful alternative to extend the resolution of optical lithography. For full-area patterning applications, despite significant progress, the two most prominent DSA methods (chemoepitaxy and graphoepitaxy) are facing a scalability challenge: the critical dimension (CD) of the guiding patterns will need to be continuously scaled down to closely match the dimension of the BCP microdomain, a task that not only contravenes some of the resolution gains achieved by density multiplication but that will also become particularly difficult below 10 nm. To avoid this conundrum, we propose here a synergistic integration of graphoepitaxy and chemoepitaxy through self-registered self-assembly (SRSA) to enable the simultaneous realization of feature density multiplication and CD shrinkage resolution gains. We report nearly perfect DSA on prepatterns with high density multiplication factors and CD of several multiples of the BCP microdomain size. A prepattern consisting of alternating stripes of a relatively thicker neutral mat and a thinner neutral brush with preferential wetting sidewalls serves as a topographic pattern to guide an ultrathin BCP blend film inside the trenches. As the oriented BCP pattern assembles, the blend film deploys a layer of chemical markers on the bottom surface through SRSA generating 1:1 chemical contrast patterns inside the trenches. After thorough removal of the blend film, the newly formed self-registered chemical patterns interpolated by the remaining neutral mat strips serve as the guiding patterns for a second chemoepitaxial DSA step to achieve full-area, defect-free DSA of thick BCP films.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据