4.8 Article

Metal-Organic-Framework-Based Gel Polymer Electrolyte with Immobilized Anions To Stabilize a Lithium Anode for a Quasi-Solid-State Lithium-Sulfur Battery

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 20, 页码 18427-18435

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b03682

关键词

lithium-sulfur battery; lithium anode; gel polymer electrolyte; quasi-solid-state; metal-organic-framework

资金

  1. 973 Program [2015CB251100]
  2. National Natural Science Foundation [21573114]
  3. Fundamental Research Funds for the Central Universities of China

向作者/读者索取更多资源

A lithium-sulfur (Li-S) battery is widely regarded as one of the most promising technologies for energy storage because of its high theoretical energy density and cost advantage. However, the shuttling of soluble polysulfides between the cathode and the anode and the consequent lithium anode degradation strongly limit the safety and electrochemical performance in the Li-S battery. Herein, a metal-organic-framework (MOF)-modified gel polymer electrolyte (GPE) is employed in a Li-S battery in order to stablize the lithium anode. In view of the abundant pores in the MOF skeleton, the as-prepared GPE not only immobilizes the large-size polysulfide anions but also cages electrolyte anions into the pores, thus facilitating a uniform flux of Li ions and homogeneous Li deposition. Cooperated with a sulfur-carbon composite cathode, the lithium with MOF-modified GPE exhibits a uniform surface morphology and dense solid electrolyte interphase (SEI) film, thus delivering good cycle stability and high-rate capability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据