4.8 Article

Synergistic Coupling of Proton Conductors BaZr0.1Ce0.7Y0.1Yb0.1O3-δ and La2Ce2O7 to Create Chemical Stable, Interface Active Electrolyte for Steam Electrolysis Cells

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 20, 页码 18323-18330

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b00303

关键词

steam electrolysis; proton conductors; triple-conducting; BZCYYb stability; La2Ce2O7; barrier layer

资金

  1. U.S. Department of Energy, office of Energy Efficiency and Renewable Energy (EERE) [DE-EE0008378]

向作者/读者索取更多资源

For the first time, proton conductors BaZr0.1Ce0.7Y0.1Yb0.1O3-delta (BZCYYb) and La2Ce2O7 (LCO) are combined to create an interface active and steam-tolerant electrolyte for high-performance proton-conducting solid oxide electrolysis cells. LCO shows good chemical compatibility with BZCYYb. The readily fabricated LCO/BZCYYb bilayer electrolyte can be densified at a temperature of as low as 1300 degrees C versus similar to 1600 degrees C for the benchmark steam-stable BaZr0.8Y0.2O3-delta electrolyte. With Pr2NiO4+delta as the anode and Ni as the cathode catalyst, this bilayer electrolyte cell yields a current density of 975 and 300 mA/cm(2) under a 1.3 V applied potential at 700 and 600 degrees C, respectively. This performance is among the best of all H-SOECs equipped with a chemically stable electrolyte so far. A BZCYYb layer in the bilayer electrolyte promotes the hydrogen evolution reaction at the cathode side, resulting in a 108% improvement over the cell without this layer. The LCO layer, on the other hand, effectively protects this functional BZCYYb layer from the high concentration of steam in a practical SOEC operation condition. The cell without the LCO layer shows degradation in terms of an increased electrolyzing potential from 1.07 to 1.29 V during a constant 400 mA/cm(2) operation at 700 degrees C. In contrast, the bilayer electrolyte cell maintains the same electrolyzing potential of 1.13 V under the same conduction for a 102 h operation. These findings demonstrate that this synergic bilayer electrolyte design is a vital strategy to overcome the dilemma between performance and stability faced by the current benchmark Zr- or Ce-rich Ba(CeZr)O3-delta electrolysis cells to achieve excellent performance and stability at the same time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据