4.8 Article

Plasma-Introduced Oxygen Defects Confined in Li4Ti5O12 Nanosheets for Boosting Lithium-Ion Diffusion

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 19, 页码 17384-17392

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b02102

关键词

Li4Ti5O12; oxygen vacancy; Li-ion diffusion coefficient; plasma; Li-ion battery

资金

  1. National Natural Science Foundation of China [11472080, 51731004]
  2. Postgraduate Research and Practice Innovation Program of Jiangsu Province [SJCX18_0033]

向作者/读者索取更多资源

Although Li4Ti5O12(LTO) is considered as a promising anode material for high-power Li-ion batteries with high safety, the sluggish Li-ion diffusion coefficient restricts its widespread application. In this work, oxygen vacancy was successfully incorporated into LTO by an eco-friendly and cost-effective plasma process. The deficient LTO delivers much higher capacities of 173.4 mAh g(-1) at 1C rate after 100 cycles and 140.5 mAh at 5C after 1000 cycles than those of pristine LTO. Meanwhile, even at a high rate of 20C, it displays an ultrahigh capacity of 133.1 mAh g(-1) after 500 cycles with a Coulombic efficiency of 100%. Detailed analysis reveals that the lithium storage mechanisms in the oxygen-deficient LTO, especially at high rate, were dominated by the insertion behavior and dual-phase conversion due to the fast ion-diffusion ability, rather than the widely reported surface capacitance by other approaches. This work highlights that defect generation by plasma in nanomaterials is an effective way to promote ion mobility, especially at high rates, and thus can be extended to other electrode materials for advanced energy-storage applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据