4.8 Article

Ab Initio Modeling of Transition Metal Dissolution from the LiNi0.5Mn1.5O4 Cathode

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 22, 页码 20110-20116

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b06010

关键词

ab initio molecular dynamics; transition-metal dissolution; lithium-ion battery; spinel cathode; solid-electrolyte interface

资金

  1. Office of Science of the U.S. Department of Energy [DE-AC02-05CH1123]
  2. National Science Foundation [ACI-1548562]
  3. Holland Computing Center of the University of Nebraska
  4. startup package by the University of Nebraska-Lincoln

向作者/读者索取更多资源

Irreversible dissolution of transition metals (TMs) from cathode materials in lithium-ion batteries (LIBs) represents a serious challenge for the application of high-energy-density LIBs. Despite substantial improvements achieved by Ni doping of the LiMn2O4 spinel, the promising high-voltage LiNi0.5Mn1.5O4 (LNMO) cathode material still suffers from the loss of electro-active materials (Mn and Ni). This process contributes to the formation of solid-electrolyte interfaces and capacity loss severely limiting the battery life cycle. Here, we combine static and ab initio molecular dynamics free energy calculations based on the density functional theory to investigate the mechanism and kinetics of TM dissolution from LNMO into the liquid organic electrolyte. Our calculations help deconvolute the impact of various factors on TM dissolution rates such as the presence of surface protons and oxygen vacancies and the nature of TMs and electrolyte species. The present study also reveals a linear relationship between adsorption strength of the electrolyte species and TM dissolution barriers that should help design electrode/electrolyte interfaces less vulnerable to TM dissolution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据