4.8 Article

Coupling a Low Loading of IrP2, PtP2, or Pd3P with Heteroatom-Doped Nanocarbon for Overall Water-Splitting Cells and Zinc-Air Batteries

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 18, 页码 16461-16473

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.8b21155

关键词

multifunctional electrocatalysts; nanocarbon; noble metal phosphides; water-splitting cells; zinc-air batteries

资金

  1. Taishan Scholar Program of Shandong Province, China [ts201712045]
  2. Key Research and Development Program of Shandong Province [2018GGX104001]
  3. Natural Science Foundation of Shandong Province of China [ZR2017MB054, ZR2018BB008]
  4. Chinese Postdoctral Science Foundation [2018M642623]
  5. Ulsan National Institute of Science and Technology (UNIST) [1.180036.01]

向作者/读者索取更多资源

Noble metal-based catalysts are currently the most advanced electrocatalysts for many applications, such as for energy conversion and for chemical industry. Because of the high cost and scarcity of noble metals, reducing the usage is a practical way to achieve scalable applications. Herein, for the first time, three novel electrocatalysts composed of noble metal phosphide (IrP2, Pd3P, or PtP2) nanoparticles with N,P-codoped nanocarbon were synthesized by the pyrolysis of mixtures of IrCl4, PdCl2, or PtCl4 with phytic acid under an ammonia atmosphere. With an ultralow loading of Pd (1.5 mu g), Pt (1.4 mu g), or Ir (1.6 mu g) on the electrode, the Pd3P/NPC, PtP2/NPC, and IrP2/NPC catalysts, respectively, exhibited excellent trifunctional catalytic oxygen reduction reaction, hydrogen evolution reaction, and oxygen evolution reaction. Notably, the IrP2/NPC-, Pd3P/NPC-, and PtP2/NPC-based water-splitting cells required only 1.62, 1.65, and 1.68 V, respectively, to deliver the current density of 10 mA cm(-2). Furthermore, the IrP2/NPC-, Pd3P/NPC-, and PtP2/NPC-based zinc-air batteries exhibited higher specific capacities than that of Pt/C. IrP2/NPC exhibited a comparable performance to that of Pt/C-IrO2 for use in rechargeable zinc-air batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据