4.8 Article

Cooperative Bilayer of Lattice-Disordered Nanoparticles as Room-Temperature Sinterable Nanoarchitecture for Device Integrations

期刊

ACS APPLIED MATERIALS & INTERFACES
卷 11, 期 18, 页码 16972-16980

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b00307

关键词

nanoarchitecture; low-temperature integrations; cooperative; lattice-disorder; organic-free

资金

  1. National Key Research and Development Program of China [2017YFB1104900]
  2. National Natural Science Foundation of China [51520105007, 51775299]

向作者/读者索取更多资源

Decreasing the interconnecting temperature is essential for 3D and heterogeneous device integrations, which play indispensable roles in the coming era of more than Moore. Although nanomaterials exhibit a decreased onset temperature for interconnecting, such an effect is always deeply impaired because of organic additives in practical integrations. Meanwhile, current organic-free integration strategies suffer from roughness and contaminants at the bonding interface. Herein, a novel bilayer nanoarchitecture simultaneously overcomes the drawbacks of organics and is highly tolerant to interfacial morphology, which exhibits universal applicability for device-level integrations at even room temperature, with the overall performance outperforming most counterparts reported. This nanoarchitecture features a loose nanoparticle layer with unprecedented deformability for interfacial gap-filling, and a compact one providing firm bonding with the component surface. The two distinct nanoparticle layers cooperatively enhance the interconnecting performance by 73-357%. Apart from the absence of organics, the internal abundant lattice disorders profoundly accelerate the interconnecting process, which is supported by experiments and molecular dynamics simulation. This nanoarchitecture is successfully demonstrated in diversified applications including paper-based light-emitting diodes, Cu-Cu micro-bonding, and SiC power modules. The strategy proposed here can open a new paradigm for device integrations and provide a fresh understanding on interconnecting mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据