4.3 Article

Ferroelectric polarization control of magnetic anisotropy in PbZr0.2Ti0.8O3/La0.8Sr0.2MnO3 heterostructures

期刊

PHYSICAL REVIEW MATERIALS
卷 3, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevMaterials.3.021401

关键词

-

资金

  1. National Science Foundation (NSF) through the Nebraska Materials Research Science and Engineering Center (MRSEC) [DMR-1420645]
  2. NSF CAREER [DMR-1148783]
  3. NSF [ECCS: 1542182, DMR-1710461]
  4. U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES) [DE-SC0016153]
  5. Nebraska Research Initiative
  6. U.S. Department of Energy (DOE) [DE-SC0016153] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

The interfacial coupling between the switchable polarization and neighboring magnetic order makes ferroelectric/ferromagnetic composite structures a versatile platform to realize voltage control of magnetic anisotropy. We report the nonvolatile ferroelectric field effect modulation of the magnetocrystalline anisotropy (MCA) in epitaxial PbZr0.2Ti0.8O3(PZT)/La0.8Sr0.2MnO3(LSMO) heterostructures grown on (001) SrTiO3 substrates. Planar Hall effect measurements show that the in-plane magnetic anisotropy energy in LSMO is enhanced by about 22% in the hole accumulation state compared to the depletion state, in quantitative agreement with our first-principles density functional theory calculations. Modeling the spin-orbit coupling effect with second-order perturbation theory points to the critical role of the d-orbital occupancy in controlling MCA. Our work provides insights into the effect of ferroelectric polarization on the magnetic anisotropy at the composite multiferroic interfaces, paving the path for their implementation into high-performance, low-power spintronic applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据