4.8 Article

Insertion and folding pathways of single membrane proteins guided by translocases and insertases

期刊

SCIENCE ADVANCES
卷 5, 期 1, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/sciadv.aau6824

关键词

-

资金

  1. Swiss National Science Foundation [205320_160199]
  2. National Center of Competence in Research NCCR Molecular Systems Engineering
  3. ETH-Zurich

向作者/读者索取更多资源

Biogenesis in prokaryotes and eukaryotes requires the insertion of alpha-helical proteins into cellular membranes for which they use universally conserved cellular machineries. In bacterial inner membranes, insertion is facilitated by YidC insertase and SecYEG translocon working individually or cooperatively. How insertase and translocon fold a polypeptide into the native protein in the membrane is largely unknown. We apply single-molecule force spectroscopy assays to investigate the insertion and folding process of single lactose permease (LacY) precursors assisted by YidC and SecYEG. Both YidC and SecYEG initiate folding of the completely unfolded polypeptide by inserting a single structural segment. YidC then inserts the remaining segments in random order, whereas SecYEG inserts them sequentially. Each type of insertion process proceeds until LacY folding is complete. When YidC and SecYEG cooperate, the folding pathway of the membrane protein is dominated by the translocase. We propose that both of the fundamentally different pathways along which YidC and SecYEG insert and fold a polypeptide are essential components of membrane protein biogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据