4.6 Article

Simultaneous Interrogation of Cancer Omics to Identify Subtypes With Significant Clinical Differences

期刊

FRONTIERS IN GENETICS
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fgene.2019.00236

关键词

similarity integration; omics data; survival analysis; DNA methylation; gene expression; miRNA

资金

  1. National Natural Science Foundation of China [61472145, 61372141, 61771007]
  2. Science and Technology Planning Project of Guangdong Province [2016A010101013, 2017B020226004]
  3. Applied Science and Technology Research and Development Project of Guangdong Province [2016B010127003]
  4. Guangdong Natural Science Foundation [2017A030312008]
  5. Fundamental Research Fund for the Central Universities [2017ZD051]
  6. Health Medical Collaborative Innovation Project of Guangzhou City [201803010021]

向作者/读者索取更多资源

Recent advances in high-throughput sequencing have accelerated the accumulation of omics data on the same tumor tissue from multiple sources. Intensive study of multi-omics integration on tumor samples can stimulate progress in precision medicine and is promising in detecting potential biomarkers. However, current methods are restricted owing to highly unbalanced dimensions of omics data or difficulty in assigning weights between different data sources. Therefore, the appropriate approximation and constraints of integrated targets remain a major challenge. In this paper, we proposed an omics data integration method, named high-order path elucidated similarity (HOPES). HOPES fuses the similarities derived from various omics data sources to solve the dimensional discrepancy, and progressively elucidate the similarities from each type of omics data into an integrated similarity with various high-order connected paths. Through a series of incremental constraints for commonality, HOPES can take both specificity of single data and consistency between different data types into consideration. The fused similarity matrix gives global insight into patients' correlation and efficiently distinguishes subgroups. We tested the performance of HOPES on both a simulated dataset and several empirical tumor datasets. The test datasets contain three omics types including gene expression, DNA methylation, and microRNA data for five different TCGA cancer projects. Our method was shown to achieve superior accuracy and high robustness compared with several benchmark methods on simulated data. Further experiments on five cancer datasets demonstrated that HOPES achieved superior performances in cancer classification. The stratified subgroups were shown to have statistically significant differences in survival. We further located and identified the key genes, methylation sites, and microRNAs within each subgroup. They were shown to achieve high potential prognostic value and were enriched in many cancer-related biological processes or pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据