4.7 Article

Accounting for errors in quantum algorithms via individual error reduction

期刊

NPJ QUANTUM INFORMATION
卷 5, 期 -, 页码 -

出版社

SPRINGERNATURE
DOI: 10.1038/s41534-019-0125-3

关键词

-

资金

  1. U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]

向作者/读者索取更多资源

We discuss a surprisingly simple scheme for accounting (and removal) of error in observables determined from quantum algorithms. A correction to the value of the observable is calculated by first measuring the observable with all error sources active and subsequently measuring the observable with each error source reduced separately. We apply this scheme to the variational quantum eigensolver, simulating the calculation of the ground state energy of equilibrium H-2 and LiH in the presence of several noise sources, including amplitude damping, dephasing, thermal noise, and correlated noise. We show that this scheme provides a decrease in the needed quality of the qubits by up to two orders of magnitude. In near-term quantum computing, where full fault-tolerant error correction is too expensive, this scheme provides a route to significantly more accurate calculations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据