4.6 Article

Dynamically reconfigurable topological edge state in phase change photonic crystals

期刊

SCIENCE BULLETIN
卷 64, 期 12, 页码 814-822

出版社

ELSEVIER
DOI: 10.1016/j.scib.2019.02.017

关键词

Phase change materials; Photonic crystals; Topological edge states; Tunability; Reconfigurability

资金

  1. International Science & Technology Cooperation Program of China [2015DFG12630]
  2. Program for Liaoning Excellent Talents in University [LJQ2015021]
  3. Singapore University of Technology

向作者/读者索取更多资源

The observation of topological edge states (TESs) revolutionized our understanding of scattering and propagation of electromagnetic (EM) waves. Supported by topological robustness, the TES at the interface between trivial and non-trivial insulators was not reflected from the structural disorders and imperfections. Recently topological photonic crystals (PhCs) were demonstrated to obtain remarkable one-way propagation of the TES, having the advantages of lossless propagation, dense integration, and high fabrication tolerance over conventional PhCs. Nevertheless, the lack of reversible switching of TES possesses significant limitations in helicity/spin filtering and tunable photonic devices. We proposed a topological PhC based on a prototypical phase-change material, Ge2Sb2Te5 (GST225) to solve the problem. We find that at a particular frequency, the TES within the structure can be reversibly switched between on and off by transiting the GST225 structural state between amorphous and crystalline. Moreover, the topology of the PhC was maintained since the tuning of TES was achieved by varying the refractive index of GST225 instead of the structural geometry. This provides a continuous change of the spectral position of the photonic bandgap and TES by gradually crystallising the GST225. We show that the phase change of GST225 from amorphous to crystalline and vice versa can be engineered in nanoseconds. Our proof of concept may offer a platform for dynamically tuning the TESs that might otherwise be challenging to attain in photonic systems. We expect it to have potential applications for photonic devices in topological optical circuits and scatter-free one-way light propagation. (C) 2019 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据