4.7 Review

NRF2 and NF-κB interplay in cerebrovascular and neurodegenerative disorders: Molecular mechanisms and possible therapeutic approaches

期刊

REDOX BIOLOGY
卷 21, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.redox.2018.11.017

关键词

Oxidative stress; Antioxidative; Nf-kappa B; Cerebrovascular; Cytoprotection Neurodegenerative; Inflammation; Alternative

资金

  1. National Institutes of Health/National Institute on Drug Abuse [2R01-DA029121-01A1]
  2. ARDF

向作者/读者索取更多资源

Electrophiles and reactive oxygen species (ROS) play a major role in modulating cellular defense mechanisms as well as physiological functions, and intracellular signaling. However, excessive ROS generation (endogenous and exogenous) can create a state of redox imbalance leading to cellular and tissue damage (Ma and He, 2012) W. A growing body of research data strongly suggests that imbalanced ROS and electrophile overproduction are among the major prodromal factors in the onset and progression of several cerebrovascular and neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS), stroke, Alzheimer's disease (AD), Parkinson's disease (PD), and aging (Ma and He, 2012; Ramsey a al., 2017; Salminen a al., 2012; Sandberg a al., 2014; Sarlette a al., 2008; Tanji a al., 2013) [1-6]. Cells offset oxidative stress by the action of housekeeping antioxidative enzymes (such as superoxide dismutase, catalase, glutathione peroxidase) as well direct and indirect antioxidants (Dinkova-Kostova and Talalay, 2010) [7]. The DNA sequence responsible for modulating the antioxidative and cytoprotective responses of the cells has been identified as the antioxidant response element (ARE), while the nuclear factor erythroid 2-related factor (NRF2) is the major regulator of the xenobiotic-activated receptor (XAR) responsible for activating the ARE-pathway, thus defined as the NRF2-ARE system (Ma and He, 2012) [1]. In addition, the interplay between the NRF2-ARE system and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kappa B, a protein complex that controls cytokine production and cell survival), has been further investigated in relation to neurodegenerative and neuroinflammatory disorders. On these premises, we provide a review analysis of current understanding of the NRF2-NF-kappa B interplay, their specific role in major CNS disorders, and consequent therapeutic implication for the treatment of neurodegenerative and cerebrovascular diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据