4.4 Article

Numerical Investigations of Flow and Heat Transfer Characteristics Between Turbulent Double Jet Impingement and a Moving Plate

出版社

ASME
DOI: 10.1115/1.4042584

关键词

turbulent forced convection; double jet impingement; jet to plate spacing; moving plate

向作者/读者索取更多资源

The analysis of fluid flow and heat transfer characteristics of double turbulent jet flow impinging on a stationary and moving plate has been numerically studied. Unsteady-state two-dimensional incompressible turbulent forced convection flow is considered for present analysis. Turbulence is modelled by the Reynolds-averaged Navier-Stokes (RANS) equation with the k - epsilon model and enhanced wall treatment. The governing equations are solved using a finite volume based commercial solver. The results for the effect of single jet and double jet, jet Reynolds number, plate velocity, location, and center spacing between the two jets on flow and heat transfer characteristics are reported. The results show that the enhancement of heat transfer is 32.70% for the double jet compared with the single jet impingement on a stationary plate. As significant enhancement of heat transfer is observed with an increase in the second jet Reynolds number and plate velocity. The results show that the size and shape of the recirculation zones between jets are greatly altered with respect to spacing between the jets to the plate and the center distance between the jets. The results show that the enhancement of heat transfer is 37.3% for moving plate velocity due to a decrease in the spacing between the jets and the plate from 6 to 4. Results show that the local peak Nusselt number is influenced by the plate velocity. These results are validated by experimental and numerical results available in the literature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据