4.8 Article

Isomerization of Perylene Diimide Based Acceptors Enabling High-Performance Nonfullerene Organic Solar Cells with Excellent Fill Factor

期刊

ADVANCED SCIENCE
卷 6, 期 6, 页码 -

出版社

WILEY
DOI: 10.1002/advs.201802065

关键词

fill factor; isomerization; organic solar cells; perylene diimide; small molecular acceptors

资金

  1. National Natural Science Foundation of China (NSFC) [21572171, 21504066, 51473009]
  2. Ministry of Science and Technology of China [2016YFA0200700]
  3. Research Grant Council of Hong Kong [14314216, T23-407/13-N]

向作者/读者索取更多资源

A strategy that employs the central-core regiochemistry to develop two isomeric perylene diimide (PDI)-based small molecular acceptors (SMAs), BPT-Se and BPT-Se1, is introduced, and the effect of the central-core regiochemistry on the optical, electronic, charge-transport, photovoltaic, and morphological properties of the molecules and their devices is investigated. The PDBT-T1:BPT-Se1-based device delivers a power conversion efficiency (PCE) of 9.54% with an excellent fill factor (FF) of 73.2%, while the BPT-Se-based device yields a PCE of 7.78%. The large improvement of PCE upon isomerization of BPT-Se should be ascribed to the concurrent enhancement of FF, short circuit current ( J(SC)), and open circuit voltage (V-OC) of the PDBT-T1:BPT-Se1 devices. The higher FF of the organic solar cells (OSCs) based on PDBT-T1:BPT-Se1 can be attributed to the higher charge dissociation and charge collection efficiency, less bimolecular combination, more balanced mu(h)/mu(e), better molecular packing and a more favorable morphology. It is worth mentioning that the FF of 73.2% is the highest value for PDI-based SMAs OSCs to date. The result shows that regiochemistry of the central core in PDI-based SMAs greatly affects the physicochemical properties and photovoltaic performance. The success of the isomerization strategy offers exciting prospects for the molecular design of PDI-based SMAs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据