4.6 Article

Dimensionality Dependent Plasticity in Halide Perovskite Artificial Synapses for Neuromorphic Computing

期刊

ADVANCED ELECTRONIC MATERIALS
卷 5, 期 9, 页码 -

出版社

WILEY
DOI: 10.1002/aelm.201900008

关键词

neuromorphic electronics; neuromorphic memory; perovskite synapses; quasi-2D perovskite; synaptic devices

向作者/读者索取更多资源

The hysteretic behavior of organic-inorganic halide perovskites (OHPs) are exploited for application in neuromorphic electronics. Artificial synapses with 2D and quasi-2D perovskite are demonstrated that have a bulky organic cation (phenethylammonium (PEA)) to form structures of (PEA)(2)MA(n)(-1)Pb(n)Br(3)(n)(+1). The OHP films have morphological properties that depend on their structure dimensionality (i.e., n value), and artificial synapses fabricated from them show synaptic responses such as short-term plasticity, paired-pulse facilitation, and long-term plasticity. The operation mechanism of OHP artificial synapses are also analyzed depending on the dimensionality and it is found that quasi-2D (n = 3-5) OHP artificial synapses show much longer retention than 2D and 3D OHP counterparts. The calculated energy consumption of a 2D OHP artificial synapse (approximate to 0.7 fJ per synaptic event) is comparable to that of biological synapses (1-10 fJ per synaptic event). These OHP artificial synapses may enable development of neuromorphic electronics that use very little energy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据