3.8 Article

Nonglutaraldehyde Fixation for off the Shelf Decellularized Bovine Pericardium in Anticalcification Cardiac Valve Applications

期刊

ACS BIOMATERIALS SCIENCE & ENGINEERING
卷 5, 期 3, 页码 1452-1461

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsbiomaterials.8b01311

关键词

bioprosthetic heart valve; tissue cross-linking; extracellular matrix stability; anticalcification; biocompatibility

资金

  1. Natural Science Foundation of China [81530059, 31800815, 31771059]
  2. Chinese Academy of Medical Sciences, CAMS Initiative for Innovative Medicine [2017-12M-3-002]
  3. Science & Technology Projects of Tianjin of China [18JCQNJC14200, 16JCQNJC14100]
  4. Fundamental Research Funds for the Central Universities [3332018119]
  5. Specific Program for High-Tech Leader &Team of Tianjin Government

向作者/读者索取更多资源

In valvular replacement surgery, especially in the construction of bioprosthetic valves with decellularized pericardial xenograft, glutaraldehyde (GA) is routinely utilized as the golden standard reagent to fix bovine or porcine pericardial tissues. However, the apparent defects of GA, including cytotoxicity and calcification, increase the probability of leaflet failure and motivate the exploration for alternatives. Thus, the aim of this study is to develop nonglutaraldehyde combined-cross-linking reagents composed of alginate-EDC/NHS (Alg) or oxidized alginate-EDC/NHS (Alg-CHO) as substitute for GA, which is confirmed to be less toxic and more biocompatible. Evaluations of the fixed acellular bovine pericardial tissues included mechanical performance, thermodynamics/enzymatic/in vivo stability tests, blood compatibility assay, cytocompatibility assay, in vitro anticalcification, and in vivo anticalcification assay by subcutaneous implantation in juvenile Wistar rats. The data revealed that the tissues fixed with the combined cross-linking reagents were superior to GA control and commercially available Sino product in terms of better in vitro hemocompatibility and cytocompatibility, lower calcification levels, better thermodynamics stability, and better regenerative capacity in subcutaneous implants, while the mechanical strength and in vivo stability were comparable. Considering all above performances, it indicated that both Alg and Alg-CHO are appropriate to replace GA as the cross-linkers for biological tissue, particularly as a nonglutaraldehyde fixation for off the shelf decellularized bovine pericardial tissue in the anticalcification cardiac valve applications. Nevertheless, studies on the long-term durability and calcification-resistance capacity in large animal model are further needed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据