4.5 Article

Dual Cherenkov and Scintillation Response to High-Energy Electrons of Rare-Earth-Doped Silica Fibers

期刊

PHYSICAL REVIEW APPLIED
卷 11, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevApplied.11.024036

关键词

-

资金

  1. Horizon 2020 RISE Intelum project [644260]
  2. Horizon 2020 Research Infrastructures (AIDA-2020) [654168]
  3. ASCIMAT project [690599]
  4. EIT SPARK project [16290]

向作者/读者索取更多资源

The investigation of the characteristic luminescent response of Ce-doped silica fibers exposed to electrons in the 20-200-GeV energy range is reported in this work to explore the feasibility of using silica-based fibers for a simultaneous dual-readout approach. The sol-gel method allows the preparation of either doped or undoped fibers with high aspect ratio and high purity, providing good flexibility and spatial resolution for the realization of a dual-readout detector. The dual Cherenkov and scintillation light emitted by silica-based fibers potentially offers applications in high-energy-physics calorimetry as well as in other fields, such as radiation monitoring in medicine, security, and industrial control. The response of the fibers, embedded in a tungsten-copper absorber block to obtain a spaghetti-like geometry in a high-energy-physics environment, is investigated through a test-beam campaign at the CERN Super Proton Synchrotron facility. The discrimination of Cherenkov and scintillation light is demonstrated and discussed, along with a detailed investigation of the scintillation properties of the material: time-resolved spectroscopy, relative light output, and attenuation length are evaluated. The results presented in this study can pave the way for further material engineering and future applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据