4.7 Article

Latent Heat Storage and Thermal Efficacy of Carboxymethyl Cellulose Carbon Foams Containing Ag, Al, Carbon Nanotubes, and Graphene in a Phase Change Material

期刊

NANOMATERIALS
卷 9, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/nano9020158

关键词

carbon foam; nanomaterials; phase change material; thermal conductivity; latent heat storage

资金

  1. National Research Foundation of Korea (NRF) - Korea government (MSIP) [2017R1A2B1008753]
  2. National Research Foundation of Korea (NRF) - Ministry of Education [2016R1A6A1A03012069]
  3. National Research Foundation of Korea [2017R1A2B1008753, 2016R1A6A1A03012069] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Carbon foam was prepared from carboxymethyl cellulose (CMC) and Ag, Al and carbon nanotubes (CNTs), and graphene was added to the foam individually, to investigate the enhancement effects on the thermal conductivity. In addition, we used the vacuum method to impregnate erythritol of the phase change material (PCM) into the carbon foam samples to maximize the latent heat and minimize the latent heat loss during thermal cycling. Carbon foams containing Ag (CF-Ag), Al (CF-Al), CNT (CF-CNT) and graphene (CF-G) showed higher thermal conductivity than the carbon foam without any nano thermal conducting materials (CF). From the variations in temperature with time, erythritol added to CF, CF-Ag, CF-Al, CF-CNT, and CF-G was observed to decrease the time required to reach the phase change temperature when compared with pure erythritol. Among them, erythritol added to CF-G had the fastest phase change temperature, and this was related to the fact that this material had the highest thermal conductivity of the carbon foams used in this study. According to differential scanning calorimetry (DSC) analyses, the materials in which erythritol was added (CF, CF-Ag, CF-Al, CF-CNT, and CF-G) showed lower latent heat values than pure erythritol, as a result of their supplementation with carbon foam. However, the latent heat loss of these supplemented materials was less than that of pure erythritol during thermal cycling tests because of capillary and surface tension forces.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据