4.7 Article

Fabrication of Antireflective Nanostructures on a Transmission Grating Surface Using a One-Step Self-Masking Method

期刊

NANOMATERIALS
卷 9, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/nano9020180

关键词

antireflection; subwavelength structures; self-masking etching; transmission grating

资金

  1. National Natural Science Foundation of China [61705204, 61705206, 61805221]
  2. Laser Fusion Research Center Funds for Young Talents [LFRC-CZ028]
  3. Science and Technology on Plasma Physics Laboratory

向作者/读者索取更多资源

Suppression of Fresnel reflection from diffraction grating surfaces is very important for many optical configurations. In this work, we propose a simple method to fabricate subwavelength structures on fused-silica transmission grating for optical antireflection. The fabrication is a one-step self-masking reaction ion etching (RIE) process without using any masks. According to effective medium theory, random cone-shaped nanopillars which are integrated on the grating surface can act as an antireflective layer. Effects of the nanostructures on the reflection and transmission properties of the grating were investigated through experiments and simulations. The nanostructure surface exhibited excellent antireflection performance, where the reflection of the grating surface was suppressed to zero over a wide range of incident angles. Results also revealed that the etching process can change the duty cycle of the grating, and thus the diffraction orders if there are oblique lateral walls. The simulation results were in good agreement with the experimental ones, which verified our physical comprehension and the corresponding numerical model. The proposed method would offer a low-cost and convenient way to improve the antireflective performance of transmission-diffractive elements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据