4.6 Review

Prostaglandins and Other Eicosanoids in Insects: Biosynthesis and Biological Actions

期刊

FRONTIERS IN PHYSIOLOGY
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fphys.2018.01927

关键词

insects; reproduction; prostaglandins; immunity; hormone signaling; phospholipase A(2)

资金

  1. National Research Foundation of Korea (NRF) - Ministry of Science, ICT and Future Planning (MSIP), South Korea [2017R1A2B3009815]
  2. National Research Foundation of Korea [2017R1A2B3009815] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

This essay reviews the discoveries, synthesis, and biological significance of prostaglandins (PGs) and other eicosanoids in insect biology. It presents the most current - and growing - understanding of the insect mechanism of PG biosynthesis, provides an updated treatment of known insect phospholipase A(2) (PLA(2)), and details contemporary findings on the biological roles of PGs and other eicosanoids in insect physiology, including reproduction, fluid secretion, hormone actions in fat body, immunity and eicosanoid signaling and cross-talk in immunity. It completes the essay with a prospectus meant to illuminate research opportunities for interested readers. In more detail, cellular and secretory types of PLA(2), similar to those known on the biomedical background, have been identified in insects and their roles in eicosanoid biosynthesis documented. It highlights recent findings showing that eicosanoid biosynthetic pathway in insects is not identical to the solidly established biomedical picture. The relatively low concentrations of arachidonic acid (AA) present in insect phospholipids (PLs) (< 0.1% in some species) indicate that PLA(2) may hydrolyze linoleic acid (LA) as a precursor of eicosanoid biosynthesis. The free LA is desaturated and elongated into AA. Unlike vertebrates, AA is not oxidized by cyclooxygenase, but by a specific peroxidase called peroxinectin to produce PGH(2), which is then isomerized into cell-specific PGs. In particular, PGE(2) synthase recently identified converts PGH(2) into PGE(2). In the cross-talks with other immune mediators, eicosanoids act as downstream signals because any inhibition of eicosanoid signaling leads to significant immunosuppression. Because host immunosuppression favors pathogens and parasitoids, some entomopathogens evolved a PLA(2) inhibitory strategy activity to express their virulence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据