4.7 Article

The QP509L and Q706L superfamily II RNA helicases of African swine fever virus are required for viral replication, having non-redundant activities

期刊

EMERGING MICROBES & INFECTIONS
卷 8, 期 1, 页码 291-302

出版社

TAYLOR & FRANCIS LTD
DOI: 10.1080/22221751.2019.1578624

关键词

African swine fever virus; superfamily II RNA helicases; qRT-PCR; siRNA

资金

  1. Fundacao para a Ciencia e a Tecnologia [CIISA-UID/CVT/00276/2019, SFRH/BD/89426/2012, SFRH/BD/104261/2014]
  2. European Union [311931]
  3. Fundação para a Ciência e a Tecnologia [SFRH/BD/89426/2012, SFRH/BD/104261/2014] Funding Source: FCT

向作者/读者索取更多资源

African swine fever virus is complex DNA virus that infects pigs with mortality rates up to 100% leading to devastating socioeconomic effected in the affected countries. There is neither a vaccine nor a treatment to control ASF. African swine fever virus genome encodes two putative SF2 RNA helicases (QP509L and Q706L). In the present study, we found that these two RNA helicases do not share a common ancestral besides sharing a sequence overlap. Although, our phylogenetic studies revealed that they are conserved among virulent and non-virulent isolates, it was possible to observe a degree of variation between isolates corresponding to different genotypes occurring in distinct geographic regions. Further experiments showed that QP509L and Q706L are actively transcribed from 4 h post infection. The immunoblot analysis revealed that both protein co-localized in the viral factories at 12 h post infection, however, QP509L was also detected in the cell nucleus. Finally, siRNA assays uncover the relevant role of these proteins during viral cycle progression, in particular, for the late transcription, genome replication, and viral progeny (a reduction of infectious particles up to 99.4% when siRNA against QP509L was used and 98.4% for siRNA against Q706L). Thus, our results suggest that both helicases are essential during viral infection, highlighting the potential use of these enzymes as target for drug and vaccine development against African swine fever.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据