4.6 Article

Graphene-Based Multilayered Metamaterials with Phototunable Architecture for on-Chip Photonic Devices

期刊

ACS PHOTONICS
卷 6, 期 4, 页码 1033-1040

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsphotonics.9b00060

关键词

graphene; metamaterial; multilayer; large scale; on-chip device

资金

  1. Australian Research Council [DP190103186]

向作者/读者索取更多资源

Graphene-based metamaterials have been theoretically demonstrated as an enabler for applications as perfect absorbers, photodetectors, light emitters, modulators, and tunable spintronic devices. However, challenges associated with conventional film deposition techniques have made the multilayered metamaterial difficult to fabricate, which have severely limited experimental validations. Herein, the experimental demonstration of the phototunable graphene-based multilayered metamaterials on diverse substrates by a transfer-free, solution-phase deposition method is presented. The optical properties of the metamaterials are tuned dynamically by controllable laser-mediated conversion from graphene oxide layers into graphene counterparts, which exhibit different degrees of conversion, which would offer huge potential for devices design and fabrication. The converted graphene layers present comparable (within 10%) optical conductivity to their chemical vapor deposited analogues. Moreover, laser patterning leads to functional photonic devices such as ultrathin flat lenses embedded in the lab-on-chip device, which maintains consistency and exhibits subwavelength focusing resolution in aqueous environments without any noticeable degradation compared with the original lens. This graphene-based metamaterial provides a new experimental platform for broad applications in on-chip integrated photonic, biomedical, and microfluidic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据