4.5 Article

A Secure and Efficient Lightweight Symmetric Encryption Scheme for Transfer of Text Files between Embedded IoT Devices

期刊

SYMMETRY-BASEL
卷 11, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/sym11020293

关键词

avalanche effect; efficiency; encryption time; key confusions; NTSA; symmetric encryption; tiny encryption algorithm

向作者/读者索取更多资源

Recent advancements in wireless technology have created an exponential rise in the number of connected devices leading to the internet of things (IoT) revolution. Large amounts of data are captured, processed and transmitted through the network by these embedded devices. Security of the transmitted data is a major area of concern in IoT networks. Numerous encryption algorithms have been proposed in these years to ensure security of transmitted data through the IoT network. Tiny encryption algorithm (TEA) is the most attractive among all, with its lower memory utilization and ease of implementation on both hardware and software scales. But one of the major issues of TEA and its numerous developed versions is the usage of the same key through all rounds of encryption, which yields a reduced security evident from the avalanche effect of the algorithm. Also, the encryption and decryption time for text is high, leading to lower efficiency in IoT networks with embedded devices. This paper proposes a novel tiny symmetric encryption algorithm (NTSA) which provides enhanced security for the transfer of text files through the IoT network by introducing additional key confusions dynamically for each round of encryption. Experiments are carried out to analyze the avalanche effect, encryption and decryption time of NTSA in an IoT network including embedded devices. The results show that the proposed NTSA algorithm is much more secure and efficient compared to state-of-the-art existing encryption algorithms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据