4.8 Article

High humidity- and contamination-resistant triboelectric nanogenerator with superhydrophobic interface

期刊

NANO ENERGY
卷 57, 期 -, 页码 903-910

出版社

ELSEVIER
DOI: 10.1016/j.nanoen.2018.12.091

关键词

Particle lithography; Superhydrophobicity; Self-cleaning property; Triboelectric nanogenerator

资金

  1. National Research Foundation (NRF) of Korea - Korean government (MSIP) [NRF-2017R1A4A1015564, NRF-2017R1A2A1A17069723]
  2. Institute for Information & Communications Technology Promotion (IITP) - Korea government (MSIP) [2017000910001100]

向作者/读者索取更多资源

Triboelectric nanogenerators (TENGs) have been widely used in the recent years to harvest and convert mechanical energy to electrical energy. With the improved performance of TENGs, their stability and robustness in harsh environments have attracted increasing attention as a next challenge. We present herein a superhydrophobic interlayer-integrated TENG that exhibits high performance against humidity and environmental contamination. We used particle lithography to prepare a superhydrophobic interlayer with a three-dimensional (3D), hierarchical, porous pattern, resulting in a high static water contact angle of 161 degrees. This 3D, hierarchical superhydrophobic interlayer played a key role in improving the TENG output performance. In addition, the TENG not only retained up to 86% of its initial electrical output at a high relative humidity of 80%, but also recovered much faster than a TENG with a regular flat interface under the same wet conditions. Finally, we found that the TENG was very robust against external contamination, maintaining approximately 88% of the initial output after five cycles of particulate contamination and washing in water, indicating that the TENGs with a superhydrophobic, 3D, hierarchical interlayer could be used for powering Internet-of-things devices that are exposed to harsh environments, such as highly humid ones with dense particulate matters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据