4.4 Article

Soft bootstrap and supersymmetry

期刊

JOURNAL OF HIGH ENERGY PHYSICS
卷 -, 期 1, 页码 -

出版社

SPRINGER
DOI: 10.1007/JHEP01(2019)195

关键词

Effective Field Theories; Scattering Amplitudes; Sigma Models; Supersymmetric Effective Theories

资金

  1. US Department of Energy [DE-SC0007859]
  2. Leinweber Graduate Fellowship from the University of Michigan
  3. University of Michigan
  4. [NSF PHY17-48958]

向作者/读者索取更多资源

The soft bootstrap is an on-shell method to constrain the landscape of effective field theories (EFTs) of massless particles via the consistency of the low-energy S-matrix. Given assumptions on the on-shell data (particle spectra, linear symmetries, and low-energy theorems), the soft bootstrap is an efficient algorithm for determining the possible consistency of an EFT with those properties. The implementation of the soft bootstrap uses the recently discovered method of soft subtracted recursion. We derive a precise criterion for the validity of these recursion relations and show that they fail exactly when the assumed symmetries can be trivially realized by independent operators in the effective action. We use this to show that the possible pure (real and complex) scalar, fermion, and vector exceptional EFTs are highly constrained. Next, we prove how the soft behavior of states in a supermultiplet must be related and illustrate the results in extended supergravity. We demonstrate the power of the soft bootstrap in two applications. First, for the N = 1 and N = 2 CP1 nonlinear sigma models, we show that on-shell constructibility establishes the emergence of accidental IR symmetries. This includes a new on-shell perspective on the interplay between N = 2 supersymmetry, low-energy theorems, and electromagnetic duality. We also show that N = 2 supersymmetry requires 3-point interactions with the photon that make the soft behavior of the scalar O(1) instead of vanishing, despite the underlying symmetric coset. Second, we study Galileon theories, including aspects of supersymmetrization, the possibility of a vector-scalar Galileon EFT, and the existence of higher-derivative corrections preserving the enhanced special Galileon symmetry. The latter is addressed both by soft bootstrap and by application of double-copy/KLT relations applied to higher-derivative corrections of chiral perturbation theory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据