4.6 Article

Efficient Ammonia Decomposition in a Catalytic Membrane Reactor To Enable Hydrogen Storage and Utilization

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 7, 期 6, 页码 5975-5985

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.8b06065

关键词

Ammonia; Hydrogen; Membrane reactor; Model; Kinetics; Purification; Process intensification

资金

  1. Department of Energy
  2. National Science Foundation [0000785]
  3. NSF [1512172]
  4. DOE Integrated University Program Graduate Fellowship
  5. Div Of Chem, Bioeng, Env, & Transp Sys
  6. Directorate For Engineering [1512172] Funding Source: National Science Foundation

向作者/读者索取更多资源

Liquid ammonia is a high-density (17.7 wt %) hydrogen carrier with a well-established production and distribution infrastructure. Efficient decomposition and purification are essential for its use as a hydrogen-storage material. Here we demonstrate the production of high-purity (>99.7%) H-2 from NH3 using a catalytic membrane reactor (CMR) in which a Ru catalyst is impregnated within a porous yttria-stabilized zirconia (YSZ) tube coated with a thin, 6 mu m Pd film by electroless deposition. The intimate proximity of catalyst and membrane eliminates transport resistances that limit performance in the conventional packed-bed membrane reactor (PBMR) configuration. The addition of a Cs promoter enabled complete NH3 conversion at temperatures as low as 400 degrees C, exceeding equilibrium constraints without the need for a sweep gas. A reactor model was developed that captured CMR performance with high fidelity. NH3 decomposition was observed to follow first-order kinetics due to efficient H-2 removal. Relative to a comparable PBMR, the Ru loading in the CMR was reduced an order of magnitude and the H-2 recovery increased 35%, enabling record volumetric productivity rates (>30 mol m(-3) s(-1)) that validate its promise for efficient, compact H-2 delivery from ammonia.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据