4.6 Article

Mechanisms and Model Process Parameters in Bioelectrochemical Wet Phosphate Recovery from Iron Phosphate Sewage Sludge

期刊

ACS SUSTAINABLE CHEMISTRY & ENGINEERING
卷 7, 期 6, 页码 5856-5866

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acssuschemeng.8b05781

关键词

Urban mining; Fertilizer; Phosphorus; Caustic soda; Kinetics; Simulation; Microbial fuel cell; Microbial electrolysis cell

资金

  1. Swiss Federal Office for the Environment [UTF 393.27.11]
  2. City of Sion (WWTP Chateauneuf, Valais)
  3. City of Martigny
  4. Valais (WWTP)
  5. Lonza Ltd. Visp
  6. WWTP Worblental (Berne)
  7. SATOM
  8. Altis
  9. Landor (fenaco)

向作者/读者索取更多资源

Phosphate recovery from sewage sludge is possible with a bioelectrochemical system (BES) also referred to as microbial fuel/ electrolysis cell (MFC, MEC). The investigated process is based on phosphate removal with iron salts, which is extensively used in wastewater treatment. The mechanisms and reaction parameters of the bioelectrochemical phosphate recovery process was examined by modeling and model reactions for future scale up works. The mechanistic analyses concerned the electron reduction process, the role of the pH as well as the observed metal removal capacity. Iron oxidation state analyses showed that the iron reduction mechanism was of negligible importance under microbial electrolysis cell conditions. The cathodic iron reduction was outperformed by fast iron precipitation and phosphate remobilization process depended largely on chemical base (OH-). Fluid particle kinetics and shrinking core modeling determined the relevancy of the reaction parameters in order to accelerate phosphate remobilisation. Rate enhancements were possible at higher pH, increased temperature and faster stirring. With the elucidated mechanisms and reaction kinetics parameters, the scale-up of bioelectrochemical system based phosphate recovery was given a foundation for scale-up works.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据