4.7 Article

Mapping Climatological Bare Soil Albedos over the Contiguous United States Using MODIS Data

期刊

REMOTE SENSING
卷 11, 期 6, 页码 -

出版社

MDPI
DOI: 10.3390/rs11060666

关键词

bare soil albedo; MODIS albedo; contiguous United States; soil line; Landsat albedo; soil moisture

资金

  1. National Natural Science Foundation of China [41771379]
  2. Key Laboratory of National Geographic State Monitoring of National Administration of Surveying, Mapping and Geoinformation grant [2017NGCMZD02]
  3. USDA project from the NASA ROSES grant [12451361002825, NNH09ZDA001N]

向作者/读者索取更多资源

Surface bare soil albedo is an important variable in climate modeling studies and satellite-based retrievals of land-surface properties. In this study, we used multiyear 500 m albedo products from the Moderate Resolution Imaging Spectroradiometer (MODIS) to derive the bare soil albedo for seven spectral bands and three broadbands over the contiguous United States (CONUS). The soil line based on red and green spectral signatures derived from MODIS data was used as the basis to detect and extract bare soil albedo. A comparison against bare soil albedo derived from 30 m Landsat data has been made, showing that the MODIS bare soil albedo had a bias of 0.003 and a root-mean-square-error (RMSE) of 0.036. We found that the bare soil albedo was negatively correlated with soil moisture from the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), with a relatively stable exponential relationship reflecting the darkening effect that moisture has on most soils. However, quantification of the relationship between bare soil albedo and soil moisture still needs to be improved through simultaneous and instantaneous measurements at a finer spatial resolution. Statistics of the multiyear climatological bare soil albedos calculated using soil types and the International Geosphere-Biosphere Programme (IGBP) land cover types suggest that: Land cover type is a better indicator for determining the magnitude of bare soil albedos for the vegetated areas, as the vegetation density is correlated with soil moisture; and soil type is a better indicator for determining the slope of soil lines over sparsely vegetated areas, as it contains information of the soil texture, roughness, and composition. The generated bare soil albedo can be applied to improve the parameterization of surface energy budget in climate and remote sensing models as well as the retrieval accuracy of some satellite products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据