4.7 Article

Mechanism of Heat Transfer through Porous Media of Inorganic Intumescent Coating in Cone Calorimeter Testing

期刊

POLYMERS
卷 11, 期 2, 页码 -

出版社

MDPI
DOI: 10.3390/polym11020221

关键词

intumescent coating; cone calorimeter; heat transfer; porous media; effective thermal conductivity; finite element analysis

资金

  1. National Fire Agency of Republic of Korea [2015-MPSS03-037-01010000-2015, 2018-NFA002-004-01010000-2018]
  2. National Disaster Management Research Institute (NDMI), Republic of Korea [2015-MPSS03-037-01010000-2015] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  3. National Fire Agency (NFA), Republic of Korea [2018-NFA002-004-01010000-2018] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

This work discusses the heat transfer process through a particular form of porous media: an inorganic-based intumescent coating in full-expansion state. Although the thermal mechanism in porous media has been vigorously studied for polymeric/ceramic/metallic foams, less information is available on its application with intumescent-type polymers. This examination demonstrates the procedure of (1) the optimisation of the coating's internal multicellular structure for numerical modelling, based on topological analyses; (2) the finite element simulation for the coating-sample tested with cone calorimetry; and (3) the quantitative evaluation of the thermal insulation performance of its porous structure by adopting effective thermal conductivity. The modelling technique was verified using measurable data from the cone calorimeter tests. Consistent agreement between the numerical predictions and experimental measurements was achieved over the whole steel-substrate temperature history, based on the clarified thermal boundaries of the specimen and modelling of the combined conduction-radiation transfer. This numerical approach exhibits the impacts of porosity, pore-size, and external thermal load on the medium's performance, as well as the individual contributions of the component heat transfer modes to the overall process. The full understanding of this thermal mechanism can contribute to the enhancement and optimisation of the thermal insulation performance of a porous-type refractory polymer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据