4.5 Article

Inward rectifier potassium (Kir) channels mediate salivary gland function and blood feeding in the lone star tick, Amblyomma americanum

期刊

PLOS NEGLECTED TROPICAL DISEASES
卷 13, 期 2, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pntd.0007153

关键词

-

资金

  1. USDA-ARS (Kerrville, TX) [58-3094-5-016]
  2. USDA:NIFA Hatch funds [LAB94313]
  3. Louisiana Board of Regents [LEQSF(2016-2019)-RD-A-26]

向作者/读者索取更多资源

Background Tick feeding causes extreme morbidity and mortality to humans through transmission of pathogens and causes severe economic losses to the agricultural industry by reducing livestock yield. Salivary gland secretions are essential for tick feeding and thus, reducing or preventing saliva secretions into the vertebrate host is likely to reduce feeding and hinder pathogen life cycles. Unfortunately, the membrane physiology of tick salivary glands is underexplored and this gap in knowledge limits the development of novel therapeutics for inducing cessation of tick feeding. Methodology We studied the influence of inward rectifier potassium (Kir) channel subtypes to the functional capacity of the isolated tick salivary gland through the use of a modified Ramsay assay. The secreted saliva was subsequently used for quantification of the elemental composition of the secreted saliva after the glands were exposed to K+ channel modulators as a measure of osmoregulatory capacity. Lastly, changes to blood feeding behavior and mortality were measured with the use of a membrane feeding system. Principal findings In this study, we characterized the fundamental role of Kir channel subtypes in tick salivary gland function and provide evidence that pharmacological inhibition of these ion channels reduces the secretory activity of the Amblyomma americanum salivary gland. The reduced secretory capacity of the salivary gland was directly correlated with a dramatic reduction of blood ingestion during feeding. Further, exposure to small-molecule modulators of Kir channel subtypes induced mortality to ticks that is likely resultant from an altered osmoregulatory capacity. Conclusions Our data contribute to understanding of tick salivary gland function and could guide future campaigns aiming to develop chemical or reverse vaccinology technologies to reduce the worldwide burden of tick feeding and tick-vectored pathogens. Author summary Tick feeding results in negative health and economic consequences worldwide and there has been continued interest in the development of products with novel mechanisms of action for control of tick populations. Kir channels have been shown to be a significant ion conductance pathway in arthropods and are critical for proper functioning of multiple biological processes. Previous work on insect Kir channels has focused on their physiological roles in renal system of mosquitoes and the data suggest that these channels represent a viable pathway to induce renal failure that leads to mortality. Based on the functional and cellular similarities of arthropod salivary glands and Malpighian tubules, we hypothesized that Kir channels constitute a critical conductance pathway within arthropod salivary glands and inhibition of this pathway will preclude feeding. Data presented in this study show that pharmacological modulators of Kir channels elicited a significant reduction in the fluid and ion secretory activity of tick salivary glands that resulted in reduced feeding, altered osmoregulation, and lead to mortality. These data could guide the future development of novel acaricides, RNAi, or genetically modified ticks to mitigate health and economic damages resulting from their feeding. Further, these data indicate a conserved function of Kir channels within multiple tissues of taxonomically diverse organisms, such as ticks and humans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据