4.6 Article

Ask1 and Akt act synergistically to promote ROS-dependent regeneration in Drosophila

期刊

PLOS GENETICS
卷 15, 期 1, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pgen.1007926

关键词

-

资金

  1. Spanish Ministerio de Economia y Competitividad, Spain [BFU2015-67623-P, BFU2016-77587-P]

向作者/读者索取更多资源

How cells communicate to initiate a regenerative response after damage has captivated scientists during the last few decades. It is known that one of the main signals emanating from injured cells is the Reactive Oxygen Species (ROS), which propagate to the surrounding tissue to trigger the replacement of the missing cells. However, the link between ROS production and the activation of regenerative signaling pathways is not yet fully understood. We describe here the non-autonomous ROS sensing mechanism by which living cells launch their regenerative program. To this aim, we used Drosophila imaginal discs as a model system due to its well-characterized regenerative ability after injury or cell death. We genetically-induced cell death and found that the Apoptosis signal-regulating kinase 1 (Ask1) is essential for regenerative growth. Ask1 senses ROS both in dying and living cells, but whose activation is selectively attenuated in living cells by Akt1, the core kinase component of the insulin/insulin-like growth factor pathway. Akt1 phosphorylates Ask1 in a secondary site outside the kinase domain, which attenuates its activity. This modulation of Ask1 activity results in moderate levels of JNK signaling in the living tissue, as well as in activation of p38 signaling, both pathways required to turn on the regenerative response. Our findings demonstrate a non-autonomous activation of a ROS sensing mechanism by Ask1 and Akt1 to replace the missing tissue after damage. Collectively, these results provide the basis for understanding the molecular mechanism of communication between dying and living cells that triggers regeneration. Author summary One of the early events that occur after tissue damage consists on the production of Reactive Oxygen Species (ROS), that signal to the surrounding tissue to initiate wound healing and regeneration. Many signaling pathways, such as JNK and p38, respond to oxidative stress and are necessary for regenerative growth. As the link between ROS and regenerative signaling is not well understood, we decided to explore the mechanism that underlies this process. To do that, we genetically induced cell death in specific areas of Drosophila wing imaginal discs and then studied the mechanism that drives living cells to replace the damage zone until it is completely regenerated. We found that the Drosophila Apoptosis signal-regulating kinase 1 (Ask1), a protein that is sensitive to oxidative stress, is a key player in this scenario. This protein acts as an intracellular sensor that upon damage activates the JNK and p38 regenerative signaling pathways. However, high activity of Ask1 can be toxic for the cell. This is controlled by Akt, a kinase downstream the insulin pathway, which attenuates the activity of Ask1 in the living cells that will participate in the regeneration process. In consequence, Ask1 and Akt act synergistically to respond to the stress generated after tissue damage and drive regeneration. Our results provide a first overview within the framework of how insulin signaling inputs could modulate the capacity to overcome tissue damage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据