4.7 Article

Gray-Molasses Optical-Tweezer Loading: Controlling Collisions for Scaling Atom-Array Assembly

期刊

PHYSICAL REVIEW X
卷 9, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevX.9.011057

关键词

-

资金

  1. ONR [N00014-17-1-2245]
  2. NSF [PHYS 1734006]
  3. Cottrell Scholars program
  4. David and Lucile Packard Foundation
  5. NDSEG Fellowship
  6. SNF [P2EZP2_172208]
  7. Swiss National Science Foundation (SNF) [P2EZP2_172208] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

To isolate individual neutral atoms in microtraps, experimenters have long harnessed molecular photoassociation to make atom distributions sub-Poissonian. While a variety of approaches have used a combination of attractive (red-detuned) and repulsive (blue-detuned) molecular states, to date all experiments have been predicated on red-detuned cooling. In our work, we present a shifted perspective-namely, the efficient way to capture single atoms is to eliminate red-detuned light in the loading stage and use blue-detuned light that both cools the atoms and precisely controls trap loss through the amount of energy released during atom-atom collisions in the photoassociation process. Subsequent application of reddetuned light then assures the preparation of maximally one atom in the trap. Using A-enhanced gray-molasses for loading, we study and model the molecular processes and find we can trap single atoms with 90% probability even in a very shallow optical tweezer. Using 100 traps loaded with 80% probability, we demonstrate one example of the power of enhanced loading by assembling a grid of 36 atoms using only a single move of rows and columns in 2D. Our insight is key in scaling the number of particles in a bottom-up quantum simulation and computation with atoms, or even molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据