4.7 Article

Spatial and Temporal Calcium Signaling and Its Physiological Effects in Moso Bamboo under Drought Stress

期刊

FORESTS
卷 10, 期 3, 页码 -

出版社

MDPI
DOI: 10.3390/f10030224

关键词

Ca2+ signal; drought stress; living cell; Moso Bamboo (Phyllostachys edulis); plasma membrane Ca2+ channels; signal network

类别

资金

  1. International Centre for Bamboo and Rattan Center [1632018008]

向作者/读者索取更多资源

Elevations in cytosolic free calcium concentration constitute a fundamental signal transduction mechanism in plants; however, the particular characteristics of calcium ion (Ca2+) signal occurrence in plants is still under debate. Little is known about how stimulus-specific Ca2+ signal fluctuations are generated. Therefore, we investigated the identity of the Ca2+ signal generation pathways, influencing factors, and the effects of the signaling network under drought stress on Phyllostachys edulis (Carriere) J. Houz. Non-invasive micro testing and laser confocal microscopy technology were used as platforms to detect and record Ca2+ signaling in live root tip and leaf cells of P. edulis under drought stress. We found that Ca2+ signal intensity (absorption capacity) positively correlated with degree of drought stress in the P. edulis shoots, and that Ca2+ signals in different parts of the root tip of P. edulis were different when emitted in response to drought stress. This difference was reflected in the Ca2+ flux and in regional distribution of Ca2+. Extracellular Ca2+ transport requires the involvement of the plasma membrane Ca2+ channels, while abscisic acid (ABA) can activate the plasma membrane Ca2+ channels. Additionally, Ca2+ acted as the upstream signal of H2O2 in the signaling network of P. edulis under drought stress. Ca2+ was also involved in the signal transduction process of ABA, and ABA can promote the production of Ca2+ signals in P. edulis leaves. Our findings revealed the physiological role of Ca2+ in drought resistance of P. edulis. This study establishes a theoretical foundation for research on the response to Ca2+ signaling in P. edulis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据