4.7 Article

Soft Piezoionic/Piezoelectric Nanocomposites Based on Ionogel/BaTiO3 Nanoparticles for Low Frequency and Directional Discriminative Pressure Sensing

期刊

ACS MACRO LETTERS
卷 8, 期 4, 页码 414-420

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsmacrolett.8b01011

关键词

-

向作者/读者索取更多资源

We report on the fabrication and electro-mechanical characterization of a nanocomposite system exhibiting anisotropic electrical response under the application of tactile compressive stresses (5 kPa) at low frequencies (0.1-1 Hz). The nanocomposite is based on a chemically cross-linked gel incorporating a highly conductive ionic liquid and surface functionalized barium titanate (BaTiO3) ferroelectric nanoparticles. The system was engineered to respond to mechanical stimulations by combining piezoionic and piezoelectric activity, generating electric charge due to a redistribution of the mobile ions across the polymer matrix and to the presence of the electrically polarized ceramic nanoparticles, respectively. The nanocomposite response was characterized in a quasi-static regime using a custom-designed apparatus. The results obtained showed that the combination of both piezo-effects led to output voltages up to 8 mV and anisotropy in the response. This allows to discriminate the sample orientation with respect to the load direction by monitoring the phase and amplitude modulation of the output signal. The integration of cluster-assembled gold electrodes produced by Supersonic Cluster Beam Deposition (SCBD) was also performed, enabling to enhance the charge transduction efficiency by a factor of 10, compared to the bare nanocomposite. This smart piezoionic/piezoelectric nanocomposite represents an interesting solution for the development of soft devices for discriminative touch sensing and objects localization in physically unstructured environments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据