4.7 Article

Expression of pathogenesis-related proteins in transplastomic tobacco plants confers resistance to filamentous pathogens under field trials

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-019-39568-6

关键词

-

资金

  1. Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT, Argentina)
  2. Centro de Ingenieria Genetica y Biotecnologia (CIGB, Cuba)

向作者/读者索取更多资源

Plants are continuously challenged by pathogens, affecting most staple crops compromising food security. They have evolved different mechanisms to counterattack pathogen infection, including the accumulation of pathogenesis-related (PR) proteins. These proteins have been implicated in active defense, and their overexpression has led to enhanced resistance in nuclear transgenic plants, although in many cases constitutive expression resulted in lesion-mimic phenotypes. We decided to evaluate plastid transformation as an alternative to overcome limitations observed for nuclear transgenic technologies. The advantages include the possibilities to express polycistronic RNAs, to obtain higher protein expression levels, and the impeded gene flow due to the maternal inheritance of the plastome. We transformed Nicotiana tabacum plastids to co-express the tobacco PR proteins AP24 and beta-1,3-glucanase. Transplastomic tobacco lines were characterized and subsequently challenged with Rhizoctonia solani, Peronospora hyoscyami f.sp. tabacina and Phytophthora nicotianae. Results showed that transplastomic plants expressing AP24 and beta-1,3-glucanase are resistant to R. solani in greenhouse conditions and, furthermore, they are protected against P.hyoscyami f.sp. tabacina and P. nicotianae in field conditions under high inoculum pressure. Our results suggest that plastid co-expression of PR proteins AP24 and beta-1,3-glucanase resulted in enhanced resistance against filamentous pathogens.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据