4.7 Article

Neuropeptides Substance P and Calcitonin Gene Related Peptide Accelerate the Development and Fibrogenesis of Endometriosis

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-019-39170-w

关键词

-

资金

  1. National Science Foundation of China [81471434, 81530040, 81771553, 81671436, 81871144]
  2. Excellence in Centers of Clinical Medicine grant from the Science and Technology Commission of Shanghai Municipality [2017ZZ01016]

向作者/读者索取更多资源

Endometriotic lesions are known to be hyperinnervated, especially in lesions of deep endometriosis (DE), which are frequently in close proximity to various nerve plexuses. DE lesions typically have higher fibromuscular content than that of ovarian endometriomas (OE) lesions, but the underlying reason remains elusive. Aside from their traditional role of pain transduction, however, whether or not sensory nerves play any role in the development of endometriosis is unclear. Here, we show that, thorough their respective receptors neurokinin receptor 1 (NK1R), calcitonin receptor like receptor (CRLR), and receptor activity modifying protein 1 (RAMP-1), neuropeptides substance P (SP) and calcitonin gene related peptide (CGRP) induce epithelial-mesenchymal transition (EMT), fibroblast-to-myofibroblast transdifferentiation (FMT) and further turn stromal cells into smooth muscle cells (SMCs) in endometriotic lesions, resulting ultimately in fibrosis. We show that SP and CGRP, or the rat dorsal root ganglia (DRG) supernatant, through the induction of NK1R and CGRP/CRLR/RAMP-1 signaling pathways, promoted EMT, FMT and SMM in endometriosis, resulting in increased migratory and invasive propensity, cell contractility, production of collagen, and eventually to fibrosis. Neutralization of NK1R and/or CGRP/CRLR/RAMP-1 abrogated these processes. Extended exposure of endometriotic stromal cells to SP and/or CGRP or the DRG supernatant induced increased expression of alpha-SMA, desmin, oxytocin receptor, and smooth muscle myosin heavy-chain. Finally, we show that DE lesions had significantly higher nerve fiber density, increased staining levels of alpha-SMA, NK1R, CRLR, and RAMP-1, concomitant with higher lesional fibrotic content than that of OE lesions. The extent of lesional fibrosis correlated positively with the staining levels of NK1R, CRLR, and RAMP-1, as well as the nerve fiber density in lesions. Thus, this study provides another piece of evidence that sensory nerves play an important role in promoting the development and fibrogenesis of endometriosis. It explains as why DE frequently have higher fibromuscular content than that of OE, highlights the importance of lesional microenvironment in shaping the lesional fate, gives more credence to the idea that ectopic endometrium is fundamentally wounds that go through repeated tissue injury and repair, and should shed much needed light into the pathophysiology of endometriosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据