4.7 Article

Improving solutions by embedding larger subproblems in a D-Wave quantum annealer

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41598-018-38388-4

关键词

-

资金

  1. JSPS KAKENHI [15H03699, 16H04382]
  2. JST-START
  3. JST-CREST [JPMJCR1402]
  4. ImPACT program
  5. Grants-in-Aid for Scientific Research [16H04382] Funding Source: KAKEN

向作者/读者索取更多资源

Quantum annealing is a heuristic algorithm that solves combinatorial optimization problems, and D-Wave Systems Inc. has developed hardware implementation of this algorithm. However, in general, we cannot embed all the logical variables of a large-scale problem, since the number of available qubits is limited. In order to handle a large problem, qbsolv has been proposed as a method for partitioning the original large problem into subproblems that are embeddable in the D-Wave quantum annealer, and it then iteratively optimizes the subproblems using the quantum annealer. Multiple logical variables in the subproblem are simultaneously updated in this iterative solver, and using this approach we expect to obtain better solutions than can be obtained by conventional local search algorithms. Although embedding of large subproblems is essential for improving the accuracy of solutions in this scheme, the size of the subproblems are small in qbsolv since the subproblems are basically embedded by using an embedding of a complete graph even for sparse problem graphs. This means that the resource of the D-Wave quantum annealer is not exploited efficiently. In this paper, we propose a fast algorithm for embedding larger subproblems, and we show that better solutions are obtained efficiently by embedding larger subproblems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据