4.7 Article

Solitonic State in Microscopic Dynamic Failures

期刊

SCIENTIFIC REPORTS
卷 9, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41598-018-38037-w

关键词

-

资金

  1. MIT Open Access Article Publication Subvention Fund

向作者/读者索取更多资源

Onset of permanent deformation in crystalline materials under a sharp indenter tip is accompanied by nucleation and propagation of defects. By measuring the spatio-temporal strain field near the indenter tip during indentation tests, we demonstrate that the dynamic strain history at the moment of a displacement burst carries characteristics of the formation and interaction of local excitations, or solitons. We show that dynamic propagation of multiple solitons is followed by a short time interval where the propagating fronts can accelerate suddenly. As a result of such abrupt local accelerations, duration of the fast-slip phase of a failure event is shortened. Our results show that formation and annihilation of solitons mediate the microscopic fast weakening phase, during which extreme acceleration and collision of solitons lead to non-Newtonian behavior and Lorentz contraction, i. e., shortening of solitons' characteristic length. The results open new horizons for understanding dynamic material response during failure and, more generally, complexity of earthquake sources.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据