4.8 Article

High-Performance Electrocatalytic Conversion of N2 to NH3 Using Oxygen-Vacancy-Rich TiO2 In Situ Grown on Ti3C2Tx MXene

期刊

ADVANCED ENERGY MATERIALS
卷 9, 期 16, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201803406

关键词

electrocatalysts; N-2 reduction reaction; oxygen vacancy; TiO2/Ti3C2Tx

资金

  1. National Natural Science Foundation of China [51425301, 21575071, 21874079, U1601214, 51573013, 51773092, 51772147]
  2. National Materials Genome Project [2016YFB0700600]
  3. Nature Science Foundation for Outstanding Young Scientists of Shandong Province [ZR2018JL011]
  4. Qingdao Science AMP
  5. Technology Planning Project [17-6-3-15-gx]
  6. Science AMP
  7. Technology Fund Planning Project of Shandong Colleges and Universities [J16LA13, J18KA112]
  8. Postgraduate Research AMP
  9. Practice Innovation Program of Jiangsu Province [Kycx18_1122]

向作者/读者索取更多资源

To achieve the energy-effective ammonia (NH3) production via the ambient-condition electrochemical N-2 reduction reaction (NRR), it is vital to ingeniously design an efficient electrocatalyst assembling the features of abundant surface deficiency, good dispersibility, high conductivity, and large surface specific area (SSA) via a simple way. Inspired by the fact that the MXene contains thermodynamically metastable marginal transition metal atoms, the oxygen-vacancy-rich TiO2 nanoparticles (NPs) in situ grown on the Ti3C2Tx nanosheets (TiO2/Ti3C2Tx) are prepared via a one-step ethanolthermal treatment of the Ti3C2Tx MXene. The oxygen vacancies act as the main active sites for the NH3 synthesis. The highly conductive interior untreated Ti3C2Tx nanosheets could not only facilitate the electron transport but also avoid the self-aggregation of the TiO2 NPs. Meanwhile, the TiO2 NPs generation could enhance the SSA of the Ti3C2Tx in return. Accordingly, the as-prepared electrocatalyst exhibits an NH3 yield of 32.17 mu g h(-1) mg(-1) cat. at -0.55 V versus reversible hydrogen electrode (RHE) and a remarkable Faradaic efficiency of 16.07% at -0.45 V versus RHE in 0.1 m HCl, placing it as one of the most promising NRR electrocatalysts. Moreover, the density functional theory calculations confirm the lowest NRR energy barrier (0.40 eV) of TiO2 (101)/Ti3C2Tx compared with Ti3C2Tx or TiO2 (101) alone.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据