4.8 Article

Electronic Structure Engineering of LiCoO2 toward Enhanced Oxygen Electrocatalysis

期刊

ADVANCED ENERGY MATERIALS
卷 9, 期 16, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201803482

关键词

electronic structure; nanosheets; oxygen evolution reaction; oxygen reduction reaction; synergistic effect

资金

  1. Australian Research Council (ARC) DECRA Grant [DE160100596]
  2. AIIM FOR GOLD Grant (2018, 2019)
  3. China Scholarship Council [201606370044]
  4. Linkage Project [LP160100273]
  5. Australian Research Council [LP160100273] Funding Source: Australian Research Council

向作者/读者索取更多资源

Developing low-cost and efficient electrocatalysts for the oxygen evolution reaction and oxygen reduction reaction is of critical significance to the practical application of some emerging energy storage and conversion devices (e.g., metal-air batteries, water electrolyzers, and fuel cells). Lithium cobalt oxide is a promising nonprecious metal-based electrocatalyst for oxygen electrocatalysis; its activity, however, is still far from the requirements of practical applications. Here, a new LiCoO2-based electrocatalyst with nanosheet morphology is developed by a combination of Mg doping and shear force-assisted exfoliation strategies toward enhanced oxygen reduction and evolution reaction kinetics. It is demonstrated that the coupling effect of Mg doping and the exfoliation can effectively modulate the electronic structure of LiCoO2, in which Co3+ can be partially oxidized to Co4+ and the Co-O covalency can be enhanced, which is closely associated with the improvement of intrinsic activity. Meanwhile, the unique nanosheet morphology also helps to expose more active Co species. This work offers new insights into deploying the electronic structure engineering strategy for the development of efficient and durable catalysts for energy applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据