4.8 Article

Spectroscopic Evidence and Density Functional Theory (DFT) Analysis of Low-Temperature Oxidation of Cu+ to Cu2+NOx in Cu-CHA Catalysts: Implications for the SCR-NOx Reaction Mechanism

期刊

ACS CATALYSIS
卷 9, 期 4, 页码 2725-2738

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acscatal.8b04717

关键词

zeolite; chabazite; mechanism; NH3-SCR-NOx; EPR; IR; DFT

资金

  1. Spanish Government [SEV 2012-0267, SEV-2016-0683, MAT2015-71261-R, CTQ2015-68951-C3-1-R]
  2. European Union [ERC-AdG-2014-671093]
  3. La Caixa-Severo Ochoa International PhD Fellowships

向作者/读者索取更多资源

Despite the intense investigation on the NH3-SCR-NOx reaction mechanism catalyzed by small pore Cu-CHA zeolites, neither the rate-determining step of the process nor the exact nature of the active sites under reaction conditions are clearly established. In this work, in situ EPR and IR techniques combined with DFT calculations are applied to the study of the oxidation half-cycle of the NH3-SCR-NOx reaction on Cu-SSZ-13 and Cu-SAPO-34 catalysts. EPR and IR spectroscopies unambiguously show that Cu+ is oxidized to Cu2+ at room temperature in the presence of the reaction mixture (NO, O-2, and NH3) or NO and O-2, producing adsorbed NO2, nitrites, and nitrates. Several pathways are proposed from DFT calculations to oxidize Cu+ cations placed in the plane of the 6R ring units of SSZ-13 and SAPO-34 to Cu2+, either by NO2 alone or by a mixture of NO and O-2, with activation energy barriers lower than 70 kJ mol(-1). The results reported here demonstrate that a reaction mechanism invoking the formation of nitrate/nitrite intermediates on copper cations attached to the zeolite framework can be operational in the low-temperature region (T < 350 degrees C). Moreover, different intermediates, nitrites versus nitrates, are preferentially stabilized, depending on the catalyst composition, silicoaluminophosphate vs aluminosilicate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据