4.8 Article

Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces

期刊

NATURE COMMUNICATIONS
卷 10, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-019-08805-x

关键词

-

资金

  1. National Key Research and Development Program of the Ministry of Science and Technology of China [2017YFB0602201]
  2. National Natural Science Foundation of China [21690082, 91545203, 21503176]

向作者/读者索取更多资源

Electrocatalytic reduction of CO2 to fuels and chemicals is one of the most attractive routes for CO2 utilization. Current catalysts suffer from low faradaic efficiency of a CO2-reduction product at high current density (or reaction rate). Here, we report that a sulfur-doped indium catalyst exhibits high faradaic efficiency of formate (>85%) in a broad range of current density (25-100 mA cm(-2)) for electrocatalytic CO2 reduction in aqueous media. The formation rate of formate reaches 1449 mu mol h(-1) cm(-2) with 93% faradaic efficiency, the highest value reported to date. Our studies suggest that sulfur accelerates CO2 reduction by a unique mechanism. Sulfur enhances the activation of water, forming hydrogen species that can readily react with CO2 to produce formate. The promoting effect of chalcogen modifiers can be extended to other metal catalysts. This work offers a simple and useful strategy for designing both active and selective electrocatalysts for CO2 reduction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据