4.8 Article

Non-monotonic pressure dependence of the thermal conductivity of boron arsenide

期刊

NATURE COMMUNICATIONS
卷 10, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-019-08713-0

关键词

-

资金

  1. Office of Naval Research under a MURI [N00014-16-1-2436]
  2. National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility [DE-AC02-05CH11231]
  3. Extreme Science and Engineering Discovery Environment (XSEDE) - National Science Foundation [ACI-1548562]
  4. Boston College Linux clusters

向作者/读者索取更多资源

Recent experiments demonstrate that boron arsenide (BAs) is a showcase material to study the role of higher-order four-phonon interactions in affecting heat conduction in semiconductors. Here we use first-principles calculations to identify a phenomenon in BAs and a related material - boron antimonide, that has never been predicted or experimentally observed for any other material: competing responses of three-phonon and four-phonon interactions to pressure rise cause a non-monotonic pressure dependence of thermal conductivity,., which first increases similar to most materials and then decreases. The resulting peak in. shows a strong temperature dependence from rapid strengthening of four-phonon interactions relative to three-phonon processes with temperature. Our results reveal pressure as a knob to tune the interplay between the competing phonon scattering mechanisms in BAs and similar compounds, and provide clear experimental guidelines for observation in a readily accessible measurement regime.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据