4.8 Article

Large orbital polarization in nickelate-cuprate heterostructures by dimensional control of oxygen coordination

期刊

NATURE COMMUNICATIONS
卷 10, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41467-019-08472-y

关键词

-

资金

  1. U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), Materials Sciences and Engineering Division
  2. U.S. DOE [DEAC02-06CH11357]
  3. DOE, BES, Scientific User Facilities Division

向作者/读者索取更多资源

Artificial heterostructures composed of dissimilar transition metal oxides provide unprecedented opportunities to create remarkable physical phenomena. Here, we report a means to deliberately control the orbital polarization in LaNiO3 (LNO) through interfacing with SrCuO2 (SCO), which has an infinite-layer structure for CuO2. Dimensional control of SCO results in a planar-type (P-SCO) to chain-type (C-SCO) structure transition depending on the SCO thickness. This transition is exploited to induce either a NiO5 pyramidal or a NiO6 octahedral structure at the SCO/LNO interface. Consequently, a large change in the Ni d orbital occupation up to similar to 30% is achieved in P-SCO/LNO superlattices, whereas the Ni e(g) orbital splitting is negligible in C-SCO/LNO superlattices. The engineered oxygen coordination triggers a metal-to-insulator transition in SCO/LNO superlattices. Our results demonstrate that interfacial oxygen coordination engineering provides an effective means to manipulate the orbital configuration and associated physical properties, paving a pathway towards the advancement of oxide electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据