4.3 Article

Bioconvection in Casson nanofluid flow with Gyrotactic microorganisms and variable surface heat flux

期刊

出版社

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S1793524519500414

关键词

Gyrotactic microorganisms; bioconvection; Casson nanofluid; variable heat flux; bivariate spectral quasilinearization method

向作者/读者索取更多资源

This paper presents a two-dimensional unsteady laminar boundary layer mixed convection flow heat and mass transfer along a vertical plate filled with Casson nanofluid located in a porous quiescent medium that contains both nanoparticles and gyrotactic microorganisms. This permeable vertical plate is assumed to be moving in the same direction as the free stream velocity. The flow is subject to a variable heat flux, a zero nanoparticle flux and a constant density of motile microorganisms on the surface. The free stream velocity is time-dependent resulting in a non-similar solution. The transport equations are solved using the bivariate spectral quasilinearization method. A grid independence test for the validity of the result is given. The significance of the inclusion of motile microorganisms to heat transfer processes is discussed. We show, inter alia, that introducing motile microorganisms into the flow reduces the skin friction coefficient and that the random motion of the nanoparticles improves the rate of transfer of the motile microorganisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据